Nu toate rezultatele testelor de ipoteză sunt egale. A test de ipoteză sau testul semnificației statistice are de obicei un nivel de semnificație atașat. Acest nivel de semnificație este un număr care este notat de obicei cu Scrisoarea greacă alfa. O întrebare care apare într-o clasă de statistici este: „Ce valoare de alfa trebuie folosită pentru testele noastre de ipoteză?”
Răspunsul la această întrebare, la fel ca în multe alte întrebări din statistici este: „Depinde de situație”. Vom explora ce ne referim la asta. Multe reviste din diferite discipline definesc că rezultatele semnificative din punct de vedere statistic sunt cele pentru care alfa este egal cu 0,05 sau 5%. Însă principalul punct de reținut este că nu există o valoare universală a alfa care ar trebui să fie utilizată pentru toți teste statistice.
Valorile utilizate frecvent Nivelurile de semnificație
Numărul reprezentat de alfa este o probabilitate, deci poate lua o valoare a oricărui negativ numar real mai puțin de unul. Deși în teorie orice număr între 0 și 1 poate fi utilizat pentru alfa, atunci când vine vorba de practica statistică, nu este cazul. Dintre toate nivelurile de semnificație, valorile 0,10, 0,05 și 0,01 sunt cele mai utilizate pentru alfa. După cum vom vedea, ar putea exista motive pentru utilizarea valorilor alfa, altele decât cele mai frecvent utilizate.
Nivel de semnificație și erori de tip I
O considerație față de valoarea „o singură dimensiune se potrivește tuturor” pentru alfa are legătură cu probabilitatea acestui număr. Nivelul de semnificație al unui test de ipoteză este exact egal cu probabilitatea a Eroare de tip I. O eroare de tip I constă în mod incorect respingere ipoteza nulă când ipoteza nulă este de fapt adevărată. Cu cât valoarea alfa este mai mică, cu atât este mai puțin probabil să respingem o adevărată ipoteză nulă.
Există diferite cazuri în care este mai acceptabil să aveți o eroare de tip I. O valoare mai mare de alfa, chiar una mai mare de 0,10 poate fi adecvată atunci când o valoare mai mică de alfa are ca rezultat un rezultat mai puțin dezirabil.
În cadrul screeningului medical pentru o boală, luați în considerare posibilitățile unui test care testează în mod fals o boală cu unul care testează în mod negativ o boală. Un fals pozitiv va duce la anxietate pentru pacientul nostru, dar va duce la alte teste care vor determina că verdictul testului nostru a fost într-adevăr incorect. Un fals negativ va oferi pacientului nostru ipoteza incorectă că nu are o boală atunci când, de fapt, o face. Rezultatul este că boala nu va fi tratată. Având în vedere alegerea, preferăm să avem condiții care să conducă la o falsă pozitivă decât una falsă negativă.
În această situație, am accepta cu plăcere o valoare mai mare pentru alfa, dacă ar rezulta în schimbarea unei probabilități mai mici de fals negativ.
Nivelul de semnificație și valorile P
Un nivel de semnificație este o valoare pe care am stabilit-o pentru a determina semnificația statistică. Acesta ajunge să fie standardul prin care măsurăm valoarea p calculată a statisticii noastre de testare. A spune că un rezultat este semnificativ statistic la nivelul alfa înseamnă doar că valoarea p este mai mică decât alfa. De exemplu, pentru o valoare alfa = 0.05, dacă valoarea p este mai mare de 0.05, atunci nu reușim să respingem ipoteza nulă.
Există câteva cazuri în care am avea nevoie de un aspect foarte mic Valoarea p să respingă o ipoteză nulă. Dacă ipoteza noastră nulă se referă la ceva care este acceptat pe scară largă ca adevărat, atunci trebuie să existe un grad ridicat de dovezi în favoarea respingerii ipotezei nule. Aceasta este furnizată de o valoare p care este mult mai mică decât valorile utilizate în mod obișnuit pentru alfa.
Concluzie
Nu există o valoare alfa care determină semnificația statistică. Deși numere precum 0,10, 0,05 și 0,01 sunt valori utilizate în mod obișnuit pentru alfa, nu există o suprasolicitare teorema matematică asta spune că acestea sunt singurele niveluri de semnificație pe care le putem folosi. Ca și în cazul multor lucruri din statistici, trebuie să ne gândim înainte de a calcula și mai ales de a folosi bunul simț.