Erorile de tip I din statistici apar atunci când statisticienii resping incorect ipoteza nulă sau declarația fără efect, când ipoteza nulă este adevărată în timp ce apar erori de tip II atunci când statisticienii nu reușesc să respingă ipoteza nulă și ipoteza alternativă, sau afirmația pentru care se efectuează testul pentru a furniza dovezi în sprijinul acesteia, este Adevărat.
Erori de tip I și de tip II ambele sunt încorporate în procesul de testare a ipotezelor și, deși poate părea că am dori să facem ca probabilitatea ambelor erori să fie la fel de mică pe cât posibil, de multe ori nu este posibilă reducerea probabilităților acestor erori, ceea ce pune întrebarea: „Care dintre cele două erori este mai gravă face?"
Răspunsul scurt la această întrebare este că depinde cu adevărat de situație. În unele cazuri, o eroare de tip I este de preferat unei erori de tip II, dar în alte aplicații, o eroare de tip I este mai periculoasă decât o eroare de tip II. Pentru a asigura o planificare adecvată a procedurii de testare statistică, trebuie să aveți în vedere atenția consecințele ambelor tipuri de erori atunci când vine momentul să decidă dacă respinge sau nu nulul ipoteză. Vom vedea exemple de ambele situații în ceea ce urmează.
Erori de tip I și de tip II
Începem prin amintirea definiției unei erori de tip I și a unei erori de tip II. În majoritatea testelor statistice, ipoteza nulă este o declarație a revendicării predominante despre o populație fără efect particular, în timp ce ipoteza alternativă este afirmația pentru care dorim să furnizăm dovezi în test de ipoteză. Pentru testele de semnificație există patru rezultate posibile:
- Respingem ipoteza nulă și ipoteza nulă este adevărată. Aceasta este ceea ce este cunoscută ca eroare de tip I.
- Respingem ipoteza nulă și ipoteză alternativă este adevarat. În această situație, decizia corectă a fost luată.
- Nu reușim să respingem ipoteza nulă și ipoteza nulă este adevărată. În această situație, decizia corectă a fost luată.
- Nu reușim să respingem ipoteza nulă, iar ipoteza alternativă este adevărată. Aceasta este ceea ce este cunoscută ca eroare de tip II.
Evident, rezultatul preferat al oricărui test de ipoteză statistică ar fi al doilea sau al treilea, în care s-a luat decizia corectă și nu a apărut nicio eroare, dar cel mai adesea, se face o eroare în timpul testării ipotezelor - dar asta face parte din procedură. Totuși, să știi cum să desfășori corect o procedură și să eviti „falsele pozitive” poate contribui la reducerea numărului de erori de tip I și de tip II.
Diferențele de bază ale erorilor de tip I și de tip II
În termeni mai mult colocviali, putem descrie aceste două tipuri de erori ca fiind corespunzătoare anumitor rezultate ale unei proceduri de testare. Pentru o eroare de tip I, respingem în mod incorect ipoteza nulă - cu alte cuvinte, noastră test statistic oferă în mod fals dovezi pozitive pentru ipoteza alternativă. Astfel, o eroare de tip I corespunde unui rezultat al testului „fals pozitiv”.
Pe de altă parte, o eroare de tip II apare atunci când ipoteza alternativă este adevărată și nu respingem ipoteza nulă. În acest fel, testul nostru furnizează în mod incorect dovezi împotriva ipotezei alternative. Astfel, o eroare de tip II poate fi considerată ca un rezultat al testului „fals negativ”.
În esență, aceste două erori sunt inversuri una de cealaltă, motiv pentru care acoperă întregul erorilor efectuate testarea statistică, dar diferă, de asemenea, prin impactul lor dacă eroarea de tip I sau de tip II rămâne nedescoperită sau nerezolvate.
Care eroare este mai bună
Gândind în termeni de rezultate fals pozitive și false, suntem mai bine dotați să luăm în considerare care dintre aceste erori sunt mai bune - tipul II pare să aibă o conotație negativă, din motive întemeiate.
Să presupunem că proiectați un screening medical pentru o boală. O falsă pozitivă a unei erori de tip I poate provoca o anumită anxietate pacientului, dar acest lucru va duce la alte proceduri de testare care vor dezvălui că testul inițial a fost incorect. În schimb, o falsă negativă din eroarea de tip II ar oferi pacientului asigurarea incorectă că nu are o boală atunci când de fapt. Ca urmare a acestor informații incorecte, boala nu va fi tratată. Dacă medicii ar putea alege între aceste două opțiuni, un fals pozitiv este mai de dorit decât un fals fals.
Să presupunem acum că cineva a fost judecat pentru omor. Ipoteza nulă este aceea că persoana nu este vinovată. O eroare de tip I ar apărea dacă persoana a fost găsită vinovată de o crimă pe care nu a comis-o, ceea ce ar fi un rezultat foarte grav pentru inculpat. Pe de altă parte, o eroare de tip II ar apărea dacă juriul găsește persoana care nu este vinovată, chiar dacă el sau ea a comis crima, ceea ce reprezintă un rezultat excelent pentru inculpat, dar nu pentru societate ca fiind întreg. Aici vedem valoarea într-un sistem judiciar care încearcă să reducă la minimum erorile de tip I.